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Abstract— Visual navigation has been widely used for state
estimation of micro aerial vehicles (MAVs). For stable vi-
sual navigation, MAVs should generate perception-aware paths
which guarantee enough visible landmarks. Many previous
works on perception-aware path planning focused on sampling-
based planners. However, they may suffer from sample ineffi-
ciency, which leads to computational burden for finding a global
optimal path. To address this issue, we suggest a perception-
aware path planner which utilizes topological information of
environments. Since the topological class of a path and visible
landmarks during traveling the path are closely related, the
proposed algorithm checks distinctive topological classes to
choose the class with abundant visual information. Topological
graph is extracted from the generalized Voronoi diagram of the
environment and initial paths with different topological classes
are found. To evaluate the perception quality of the classes, we
divide the initial path into discrete segments where the points
in each segment share similar visual information. The optimal
class with high perception quality is selected, and a graph-
based planner is utilized to generate path within the class.
With simulations and real-world experiments, we confirmed
that the proposed method could guarantee accurate visual
navigation compared with the perception-agnostic method while
showing improved computational efficiency than the sampling-
based perception-aware planner.

I. INTRODUCTION
Fully automated robotic operation requires a perception

module that recognizes surrounding environment and esti-
mates the robot state. In particular, visual odometry (VO)
and simultaneous localization and mapping (SLAM) using
vision sensors have been conducted for self-localization of
micro aerial vehicles (MAVs) due to low weight, cost, and
small size of the sensors while capturing abundant visual
information of surrounding environments. The integration of
motion planning and perception modules poses significant
issues for consideration, one of which is that the robot’s
localization capabilities are dependent on the path chosen by
the robot. Therefore, it is necessary to take the perception
module into account at the motion planning level, and this
approach is called perception-aware motion planning.

In general, the performance of visual navigation is affected
by the number and distribution of salient keypoints in the
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Fig. 1. Snapshot from the experiment. For robust visual navigation,
a micro aerial vehicle should decide a path which can guarantee
enough visible features from multiple path candidates.

observed images. For example, if the generated trajectory
passes through a texture-less area, it may become difficult
to execute given missions due to accumulated error of state
estimation. Therefore, instead of conventional planners that
are agnostic to the performance of the perception module,
perception-aware motion planning is needed to lead stable
visual navigation of MAVs.

To this end, the previous perception-aware planners have
focused on approximation of navigation performance by
inserting a perception-related cost on existing motion plan-
ning algorithms. Especially, sampling-based methods [1], [2],
[3] have been mainly used for perception-aware planners.
However, since the evaluation of perception quality itself is
usually computationally heavy [4], difficulty arises when the
planner suffers from sample inefficiency in large environ-
ments.

Instead of covering the entire environment with randomly
drawn samples, exploiting higher-level information about
the environment improves efficiency of global planning.
The topology of the environment is determined from the
geometrical distribution of obstacles. This fact leads to an
important heuristic in the perspective of visual navigation.
The visibility of the landmarks is limited by the relative
pose between MAV and obstacles, thus the topological class
of path restricts the maximum obtainable visual information
[5], [6]. Therefore, taking topological information of paths
into account helps to find whether the path is advantageous
for visual navigation. In addition, once a reference path
is generated, it cannot be updated to belong to a different
topology through gradient-based optimization [7]. As a re-
sult, finding topological classes of paths with enough visual
features gives important prior information for perception-
aware path planning.



In this paper, a topological perception-aware planner is
suggested to prevent situations difficult to obtain accurate
state estimation due to limited visual information. To create a
path which attains both short path length and good perception
quality, we propose the process of generating paths belonging
to distinct topology classes and evaluate each path’s quality
with respect to path length and visual information. According
to the authors’ knowledge, this work is the first research on
perception-aware motion planning that incorporates visual
information with topological planning. The proposed planner
can be exploited as an reference path to generate a feasible
trajectory via trajectory optimization, or to provide prior
information for a lower-level global planner.

II. RELATED WORK

A. Perception-aware Planning

Perception-aware motion planning refers to the algorithms
that generate motion by considering the localization quality
of the onboard navigation system. This study focuses specif-
ically on motion planning algorithms that are applicable to
visual navigation systems. In order to find a path from the
start to the goal point, most perception-aware global plan-
ning algorithms are based on sampling-based methods. [8]
suggested the Rapidly-exploring random belief tree (RRBT)
for planning in belief space with a linear estimator based on a
sampling-based method. As an extension of RRBT for vision
systems, [1] applied local bundle adjustment (BA) in offline
to estimate the covariance of future pose, and [2] designed
perception score based on the feature numbers in images
as an approximation of localization quality. [3] utilized the
photometric information of images for dense VO and biased
the path toward texture-rich region. Unlike aforementioned
methods, our work suggests a global planning method which
can utilize the environment’s topological information as a
heuristic for perception quality.

Another focus of perception-aware motion planning is
improving perception quality of the trajectory via considering
tracking and triangulation of local landmarks. [9] formulated
an optimal control problem which simultaneously minimizes
the energy and velocity of the point of interest in image
plane. [10] suggested differentiable cost for keeping visible
features inside the Field of View (FoV) of the camera. [11]
applied feature triangulation and covisibility-related costs
to gradient-based trajectory optimization, encouraging the
tracking of local landmarks. [12] and [13] used receding-
horizon method with designed planning cost regarding per-
ception quality, which is evaluated from local landmarks.

B. Topological Planning

Among other global planning methods such as sampling-
based methods and search-based methods, topological plan-
ning methods obtain paths from the topological graph of the
environment. Topological planning is widely used in motion
planning in the sense of reducing planning dimension with
topological constraints [6], storing and searching for pre-
visited regions [14], and finding the global optimal path from
distinctive topologies [15]. Our work also evaluates paths

Fig. 2. Overview of the proposed method.

from distinctive topologies, though we focus on path plan-
ning with consideration about the path’s perception quality.

To create a traversable topological graph structure from
a given environment, PRM-based methods and generalized
Voronoi diagram (GVD) can be used. However, as pointed
out in [15], GVD is more beneficial than PRM-based meth-
ods in global planning since GVD guarantees coverage of
the environment. GVD is a form of a roadmap structure,
which can be computed online via the Euclidean signed
distance field (ESDF) with low computational cost [16].
Although topology in 3D spaces can be computed to better
describe MAV flight as in [17], in this study, we use a 2D
topological graph for the sake of efficient computation under
the assumption that the flight altitude would not drastically
change.

III. SYSTEM DESCRIPTION

In this paper, we suggest a planner that allows MAV to
move from the start to the goal point while maintaining
good self-localization. The MAV can observe surrounding
environments and estimate ego-motion using a vision sensor.
Although proposed method can also be adapted to multi-
camera systems, but single camera is used for demonstration.

The overall structure for the perception-aware motion
planning is described in Fig. 2. To represent the environment,
we used an occlusion-aware feature map, which is an inte-
grated map of volumetric and landmark maps. This allows
to obtain information about visibility of map points and
occupancy of the environment, which is required for eval-
uating the perception quality and generating a collision-free
path. The global planner first constructs a sparse topological
graph via GVD. Then initial paths belonging to distinct
topologies are extracted from the graph. For each initial
path, it is divided into multiple segments based on visibility
information. Pose samples are generated near segments, and
perception quality of each sample is evaluated. Then the path
which can obtain the maximum perception information is
generated via graph search. Among the generated paths from
distinctive topologies, the best path with respect to the path
length and perception quality is selected as an output of the
global planner.



Fig. 3. Occlusion-aware feature map representation of the environ-
ment drawn in Fig. 4. The darker the voxel color is, the more
landmark information it contains. The arrows in the figure indicate
the orientation with maximum visible landmarks from sampled
position, and the color of each arrow represents the number of
visible landmarks from the respective pose.

IV. MAP REPRESENTATION

In perception-aware planning, it is required to compute
visibility information of landmarks from arbitrary poses to
evaluate perception quality at candidate waypoints. In this
paper, we consider visual SLAM algorithms which represent
the map using point features observed in keyframes [18],
[19]. While sparse pointcloud map allows efficient query
of visible landmark candidates using adjacent keyframes, it
does not provide the capability to consider geometry of the
scene and exclude occluded landmarks. This may limit the
accuracy of the queried visibility information, especially in
an obstacle-filled environment where occlusion of landmarks
occurs frequently. To tackle this issue, we have considered
3D volumetric map representation which allows more accu-
rate reasoning on 3D geometry of the scene.

3D volumetric map representations have been developed
to enable robots to differentiate between the traversable and
occupied spaces. By modeling 3D space with probabilistic
occupancy grid [20] or ESDF [21], these map representations
inherently provide the ability to reason about scene geometry.
We devise a method to integrate SLAM map with volumetric
map representation to create occlusion-aware feature map
representation. Our method is similar to the method proposed
in [3], where the authors stored texture information for each
occupied voxel’s surface. In our case, instead of storing pho-
tometric information, we embed each landmark’s information
in the occupied voxel corresponding to its location. Example
of this map representation is illustrated in Fig. 3.

To construct the integrated map of an environment, we
first construct a volumetric map and a SLAM map separately
from series of measurements by RGB-D camera. Then the
respective global coordinate frames of the maps are aligned
and each landmark’s information is embedded into the voxel
at its location. Finally, to allow raycasting-based visibility
query, landmark information is shifted to the nearest surface
voxel which is visible from reference keyframe’s pose. In

Fig. 4. Illustration of dependence of perception quality on homology
classes. Tracking a trajectory belonging to homology class marked
in red leads to bad localization because feature-rich surfaces are
occluded by the wall in the middle. Therefore, homology class of
blue path is preferred in terms of perception quality.

this work, we used ORB-SLAM2 [18] and Voxblox [21] for
SLAM map and volumetric map representation, respectively.

V. TOPOLOGICAL GLOBAL PLANNING

Based on the integrated map, we generate a global path
which serves as an initial reference for a low-level planner.
From the observation that visual information and relative
position between MAV and obstacles are strongly related,
we devise a method to generate multiple global paths with
distinctive topologies and to select the path with respect
to the perception quality and path length. This section is
configured as follows. In Sec. V-A, we will give a detailed
explanation on why it would be beneficial for a perception-
aware planner to consider topological properties of the path.
The process of perception-aware planning will be covered in
Sec. V-B ∼ V-E. The overall process of global planner is
illustrated in Fig. 5 and Alg. 1.

A. Homology Classes and Perception Quality

In this subsection, the close relationship between topo-
logical planning and perception quality is explained. To
express topological equivalence of trajectories, the concept of
homology class is widely used. Two trajectories with fixed
start and goal points in 2D belong to the same homology
class if the cycle formed by them does not include or intersect
any obstacle. For a more formal definition of homology class,
refer to [22].

During trajectory generation for MAV flight, the local
planner refines the reference path from global planner to
smooth and feasible trajectory. In order to maintain visual
navigation stable, the global planner should generate a path
such that navigation does not fail, not only in a reference
path but also in a path refined by the low-level planner.
However, the local planner module updates the path with
collision avoidance constraint. For example, some algorithms
restrict the search space into free, convex region as a hard
constraint [23], [24] and other algorithms which use gradient-
based optimization update paths to the opposite direction
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Fig. 5. Process of the proposed planner (a) Topological graph
generation from GVD (b) For each homology class, path segments
are extracted based on feature co-visibility. (c) Pose samples are
generated and optimal paths are found. (d) The best path is selected
with respect to the perception quality and path length.

of obstacles [25], [26]. Therefore, it is difficult for local
planners to update a path to jump over obstacles and change
its homology class, thus reference and refined paths are
topologically equivalent.

On the other hand, a path’s homology class affects visual
information which MAV can obtain by following the path.
Selecting the homology class fixes relative topology of the
path to the obstacles, which determines visible surfaces of
obstacles. In the vision-based navigation system, features are
detected on the surface of obstacles. If feature-rich surfaces
are hindered by occlusion, we can conclude that correspond-
ing homology class is disadvantageous for visual navigation.
Thus, the homology class which can guarantee visibility of
feature-rich surfaces is preferred. The relationship between
homology class and perception quality of the path can be
observed in Fig. 4.

Therefore, searching distinctive homology classes can be
a helpful heuristic for finding a reference path for reli-
able visual navigation. In addition, it also enables to boost
computation by searching each homology class in parallel,
exploiting multi-process CPU.

B. Topological Graph Generation

The methodology that we present aims to find a global
path through the topological structure of the environment. To
this end, it is necessary to generate topological graphs in a
given environment and extract homology classes. To generate
a topological graph, we create a 2D GVD with the given
reference height. Construction of GVD follows the method
suggested by [16], in which the ESDF map is used to obtain
a 2D voxel map of GVD. Since the graph structure of GVD
is needed, vertices and edges are extracted from the GVD.
A voxel is a vertex if 1 or more than 2 neighboring voxels
are elements of GVD. And a connected set of voxels is an
edge if it connects two vertices. By classifying each voxel

Algorithm 1 Topological perception-aware path planner

1: Input: Map M , Start s, Goal g
2: Output: Global Path P ∗

3: Topological Graph Generation G = (V, E)
4: Generate Initial Paths from Distinct Homology Classes
H = {h1, · · ·hT }

5: for ht ∈ {h1 · · ·hT } do
6: Extract Path Segments

ht → s(s,p1), s(p1,p2), · · · , s(pm,g)
7: Generate 4DoF pose samples (njk) & evaluate percep-

tion quality I(njk)
8: Pose graph search P ∗

t = (n1k1
, n2k2

, · · · , nNkN
)

9: Evaulate quality of the path q(P ∗
t ) (7)

10: end for
11: P ∗ = argmax

q(P∗
t )

{P ∗
1 , · · ·P ∗

T }

Fig. 6. Illustration of path segment extraction process. Green cross
represents landmarks, and the co-visible candidate set is marked in
purple circles. A path is iteratively divided until there are significant
portion of co-visible landmarks at both ends of every segment.

as a vertex or an edge, a bi-directional topological graph is
acquired. By adding the start and goal points to the graph,
connected paths from the start to the goal can be obtained
from this graph. By adopting the methodology from [15], we
can find ‘initial paths’, which are sets of consecutive vertices,
from distinct homology classes using breadth first search on
the topological graph.

C. Extracting Path Segments

After initial paths are generated in different homology
classes, each path and corresponding homology class are
evaluated with respect to perception quality. It is important
to maintain co-visibility to the landmarks along the path for
vision-based localization. Thus, we evaluate the perception
quality of the path based on co-visible landmarks while
traveling along the path. However, especially in environments
with multiple obstacles, visible landmarks change as the
robot travels through the path, which makes it difficult to
find a set of globally co-visible landmarks along the whole
path.

Thus, we seek to split the initial path into smaller ‘path
segments’ where points in the same segment share a signif-
icant amount of visible landmarks. This is inspired by the



previous study on co-visibility based regional segmentation
[27], where different positions in the map are grouped based
on the similarity of their observations. While the method
in [27] was devised to obtain a topological map of the
environment, our objective is to divide a path based on
the similarity of predicted observation along the path. The
algorithm is depicted in Fig. 6.

We defined the ‘visibility candidate set’ at point p ∈ R3,
V (p), as the set of the landmarks which are within the
vertical FoV and sensing range. Given two points p,q ∈ R3,
the ‘co-visible candidate set’ CV (p,q) and ‘co-visibility
ratio’ CR(p,q) are respectively defined as

CV (p,q) = V (p) ∩ V (q) (1)

CR(p,q) =
|CV (p,q)|
|V (p) ∪ V (q)|

(2)

As in Fig. 6, we begin with evaluating co-visibility ra-
tio of the start and goal point: CR(s,g). If it is larger
than the threshold η ∈ [0, 1], we consider the path as
a path segment s(s,g) and assign CV (s,g) as the co-
visible candidate set for the path segment. Otherwise, we
query the visibility candidate set at the midpoint p of the
path and evaluate CR(s,p) and CR(p,g). We iteratively
divide the path until the co-visibility ratio of the end points
for each segment becomes larger than η, or length of the
segment reaches the minimum length `min. As a result,
an initial path is transformed into multiple path segments
s(s,p1), s(p1,p2), · · · , s(pm,g), where the points in the
same segment share significant co-visible landmarks. Fur-
thermore, the previously stored co-visible candidate set of
the path segment is used during the evaluation of perception
quality to avoid redundant querying of visible landmarks,
which include time-consuming raycasting.

D. Pose Graph Construction & Graph Search

While a path over sparse graph can represent the homology
class, directly using it as global path precludes the existence
of a path with better perception quality within the homology
class. Also, since GVD is extracted from the 2D plane at the
reference height, 3D obstacles cannot be considered in the
sparse graph. From this need, we construct a dense graph
from given sequence of path segments as in Fig. 5 (c). Each
node of the dense graph represents a 4 Degree of Freedom
(DoF) pose including the position and yaw angle of the MAV
(x, y, z, and θ), and graph search is performed to find the
optimal 4 DoF path.

The 4 DoF pose graph is constructed as follows. First
we divide the initial path into intervals of length ` which
is determined by nominal speed vnom and time step Ts.
Each of these intervals represents a layer of the graph; only
the nodes within consecutive layers are allowed to form
edges. We denote layers as L1, L2, · · ·LN where N is the
total number of the intervals obtained by splitting the entire
path. For each layer Lj , waypoint candidates are randomly
sampled from the plane passing through the starting point
of the interval and perpendicular to the edge of the interval.
Samples are generated within a distance Rsample centered

around the path. On top of this, yaw angles are sampled at
equal intervals. The sampled waypoint candidates and yaw
angles are combined to form nodes of the layer {nj1, · · ·njm},
where njk = (xjk, y

j
k, z

j
k, ψ

j
k). Nodes in the consecutive layers

are connected only if the difference of yaw angles between
the nodes is smaller than a certain limit ψ̇lim to prevent an
abrupt yaw change.

To find the path with maximum visual information, each
node’s perception quality needs to be evaluated. We use the
Fisher information matrix (FIM) as the metric for perception
quality, which quantifies the information that can be obtained
about the desired state through measurement. By modeling
the camera as a bearing sensor as in [28], FIM of measure-
ment on a landmark located at l observed from pose x can
be formulated as

FIM(l;x) =
1

σ2
(J(l;x))TJ(l;x) (3)

J(l;x) =
( 1

||lc||
I3 −

1

||lc||3
lc(lc)T

) [
I3 [lw]×

]
(4)

where lc, lw are the position of point seen from camera frame
and global frame respectively, and σ is standard deviation of
measurement noise. For each node, we compute the visible
landmarks from previously stored co-visible candidate set
along the path segment containing the layer node is in. For
the j-th node, we evaluate the FIM of the visible landmarks
at pose njkj

and denote it as I(njkj
).

We perform a graph search over the pose graph to find
the 4 DoF path with the smallest value of combined distance
cost and perception cost. Given a path P as a sequence of
connected nodes P = (n1k1

, n2k2
, · · · , nNkN

), we can formulate
the graph search problem as

P∗ = argmin
k1,k2,··· ,kN

λdcd(P)− λpcp(P), (5)

where λd, λp ∈ R are weights for distance cost and
perception cost, the distance cost cd(P) can be defined
straightforward as the length of total path. The perception
cost of the path cp(P) is formulated as

cp(P) =
1

N

N∑
i=1

log(det(I(niki
)). (6)

To perform graph search, a layered structure of the graph
can be exploited. Since each layer is arranged in time order,
the graph is a directed acyclic graph. Also, topological
sorting is used for graph search by dynamic programming. It
can find an optimal path with less computation than Dijkstra
search [29].

E. Selection of the best path

We design the cost function to quantify the quality of the
generated path P ∗ for each homology class as

q(P∗) = ηd
( d

dmin
− 1
)
− ηpf(cp,min − cp,thr), (7)

cp,min = min(cp(s(s,p1)), · · · , cp(s(pm,g))) (8)

where f is defined as f(x) = 1/(1 + exp(x)), d is the
distance of the path, dmin is the length of the shortest



TABLE I: Parameter List for Simulation

Types Parameter Name Value

Segment Min Segment Length [m] lmin = 0.5

Extraction Covisibility Ratio η = 0.5

Pose Graph

Nominal speed [m/s] vnom = 0.4

Time Step [s] Ts = 1.0

The number of Samples 10

Max Radius [m] Rsample = 0.4

Yaw Rate Limit [rad/s] ψ̇lim = 0.3

Edge Distance Weight λd = 0.1

Edge Perception Weight λp = 1.0

Selection
Perception Quality Threshold cp,thr = 6.0

Path Distance Weight ηd = 0.2

Path Perception Weight ηp = 1.5

path among the generated path candidates, and cp,thr is the
parameter to indicate the required information for robust
visual navigation. As in (8), the perception quality of the path
is determined by the minimum cp value among the segments
of the path. It enables to avoid selecting the path passes
through feature-poor region, which would result in high
estimation error. The reason for using the sigmoid function
is because effect of FIM on the localization performance
degrades if there is enough information. Among the selected
best path within each homology class, the path with the
smallest cost is selected as the global path.

VI. VALIDATION

To validate the proposed topological global planner, simu-
lations and experiments were performed. The global planner
was connected to local trajectory optimization to obtain a
smooth and kinodynamically feasible trajectory. We used the
gradient-based optimization method proposed in [26] as an
example of local planner.

A. Simulation

We used the Unreal engine with AirSim plugin [30] to
perform high-fidelity simulations in photo-realistic environ-
ments. For visual navigation, a front-looking RGB-D camera
was used and we conducted experiments in two realistic
environments, storage and gallery, as in Fig. 7. Simulations
were performed on a desktop with 8 core Intel i7 3.2GHz
CPU and 32GB RAM.

Four metrics were used for evaluation of the path quality.
The first is the total length of the path and the second is the
translational estimation error of VO algorithm, which is for
quantifying the perception quality of the path. Third metric
is the ratio of successful runs of VO without loss in feature
tracking, which is related to the reliability of the path for
stable navigation. Lastly, computation time was calculated to
check computational efficiency of the algorithms. We used
ORB-SLAM2 [18] as an example for VO algorithm.

We compared the performance of the proposed method
with two other methods. 1) Perception-Agnostic Planner
(AP), which is a topological planner but without considera-
tion about perception quality, 2) perception-aware sampling-

based planning based on RRT* similar to [2], with some
modification to fit in our settings. In perception-aware RRT*,
at each sample, visible landmarks are queried, and the
perception cost is evaluated using landmarks co-visible from
the sample pose and its parent’s pose. The criterion for
choosing the best path is comparing weighted sum of the
distance cost and the perception cost, similar to the proposed
planner. Three different numbers of samples were used for
the sampling-based planner. Perception-aware RRT* with N
samples are shortened as ‘R-N ’. Parameters used in the
simulations are noted in Table I.

We ran each algorithm 10 times for each scenario, and the
resulting trajectories are presented on Fig. 7. Also, absolute
trajectory error (ATE) for each path and success rates of VO
are presented in Fig. 8. For clear visualization, ATE values
for only three trials are visualized for each planner.

In the first environment, storage, there are two selectable
homology classes, distinguished by the wall in the middle.
The class at upper side passes through a texture-less region
and the lower side has many objects with abundant visual
information. As in Fig. 7(a), the proposed algorithm selected
the lower side in every trials although path length became
longer than choosing the upper side. On the contrary, AP
selected the upper side’s homology class and estimation error
became higher than the proposed method’s trajectory. For
sampling-based planner, we chose 300, 1000, and 2000 sam-
ples respectively. Even though the sampling-based planner
is designed to prefer feature-rich paths, planner with low
sample numbers (300, 1000) often failed to find homology
class beneficial for visual navigation and failed to maintain
VO during flight. With large samples (2000), it can generate
path toward feature-rich region and result in small estimation
error, but it takes more computation time compared to the
proposed method.

The second environment, gallery, contains two major
texture-poor regions: a horizontal corridor to the right of the
center and a longitudinal corridor to the upper middle. In
contrast, many texture-rich objects are distributed along the
walls surrounding the environment, especially the walls of
left and upper side. Similar to the previous environment, AP
chose the homology class with the shortest length among 10
distinct homology classes. However, since the selected path
traverses through texture-poor region, it resulted in a higher
odometry error and a lower success rate (3/10) compared to
the proposed method. For sampling-based planners, since the
environment is even larger and more complicated than the
previous one, sample efficiency dropped and required more
samples to find a visually advantageous path. With 1000
and 8000 samples, the planner often selected path traversing
texture-poor regions. Sampling-based planner with abundant
sample number (15000) generated paths with lowest estima-
tion error, but it took over 100 s to generate the path at each
trial. On the contrary, the proposed algorithm generated paths
traversing texture-rich area in all trials, within a much shorter
computation time. Results of each simulation environment
are summarized in Table II.



(a) (b)

Fig. 7. Resulting trajectories from the tested planners in (a) storage and (b) gallery environments.

(a) (b)

Fig. 8. Absolute trajectory error of VO with respect to travel distance, and success rate for each planner at (a) storage and (b) gallery
environment. Only 3 successful trials for each planner are shown for clear visualization.

TABLE II: Simulation results for storage and gallery environ-
ments. Mean values of length of the groundtruth trajectory, distance
between the goal and the estimated goal position, and computation
time are measured. Note that goal estimation error was evaluated
only for successful trials.

Planner Length Goal Error Comp. Time

storage

Proposed 15.9 m 0.118 m 1.58 s

AP 14.5 m 0.391 m 0.402 s

R-300 9.86 m 0.083 m 3.04 s

(12m×10m) R-1000 13.0 m 0.136 m 9.31 s

R-2000 14.3 m 0.082 m 19.5 s

gallery

Proposed 35.8 m 0.235 m 7.92 s

AP 33.9 m 0.664 m 1.66 s

R-1000 36.8 m 0.619 m 9.52 s

(22m×20m) R-8000 36.4 m 0.598 m 90.2 s

R-15000 36.7 m 0.163 m 164.1 s

B. Real-world Experiment

For experiments, S-500 frame quadrotor equipped with
forward-facing Realsense D435 camera was used. We used
Pixhawk4 flight controller and Intel i7 NUC computer.

As in Fig. 9(a), the environment has two obstacles parallel
to each other, with only a small number of features visible

in the middle region and feature-rich objects visible from
the rear sides. Two algorithms, the proposed algorithm and
the perception-agnostic planner were mounted on MAV.
We used OptiTrack motion capture system to provide state
information to the controller in order to prevent control
failure. It also provided the groundtruth poses. Estimated
trajectories from visual odometry were compared with the
groundtruth trajectories. As Fig. 9(b). shows, the proposed
planner created a path with a low odometry error through the
region, but the perception-agnostic planner showed failure
on VO since it did not take the visual information of the
environment into account.

VII. CONCLUSIONS & FUTURE WORKS

Based on the observation that the homology class affects
the visual information which MAVs can obtain, we proposed
a topological path planner for perception-aware navigation.
By creating a sparse topological graph from 2D GVD, mul-
tiple paths within distinctive homology classes are obtained.
Then, the best path within each homology class is searched
using graph search. Finally, among the paths selected within
each homology, the path with minimum travel cost and
perception cost is selected. We validated the effectiveness
of our planner in multiple simulation environments and



(a)

(b)

Fig. 9. Result from hardware experiments. (a) MAV generates a
path pass to move through two waypoints and arrives at the goal
point. (b) The resulting trajectories with the proposed planner (left)
vs. the perception-agnostic planner (right). Blue lines indicate the
groundtruth trajectory of MAV, and red lines are estimated position
trajectory. With the perception-agnostic planner, the position esti-
mate could be obtained during a part of the trajectory only, because
of the early VO failure.

experiment. Future works would include an extension to
online planning in unknown environments, reducing the need
of tuning parameters (i.e. perception quality threshold cp,thr)
via data-driven methods.

REFERENCES

[1] M. W. Achtelik, S. Lynen, S. Weiss, M. Chli, and R. Siegwart,
“Motion-and uncertainty-aware path planning for micro aerial vehi-
cles,” Journal of Field Robotics, vol. 31, no. 4, pp. 676–698, 2014.

[2] S. A. Sadat, K. Chutskoff, D. Jungic, J. Wawerla, and R. Vaughan,
“Feature-rich path planning for robust navigation of mavs with mono-
slam,” in 2014 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2014, pp. 3870–3875.

[3] G. Costante, J. Delmerico, M. Werlberger, P. Valigi, and D. Scara-
muzza, “Exploiting photometric information for planning under un-
certainty,” in Robotics research. Springer, 2018, pp. 107–124.

[4] A. A. Makarenko, S. B. Williams, F. Bourgault, and H. F. Durrant-
Whyte, “An experiment in integrated exploration,” in IEEE/RSJ inter-
national conference on intelligent robots and systems, vol. 1. IEEE,
2002, pp. 534–539.

[5] P. Fogliaroni, J. O. Wallgrün, E. Clementini, F. Tarquini, and D. Wolter,
“A qualitative approach to localization and navigation based on visibil-
ity information,” in International Conference on Spatial Information
Theory. Springer, 2009, pp. 312–329.

[6] G. J. Stein, C. Bradley, V. Preston, and N. Roy, “Enabling topological
planning with monocular vision,” in 2020 IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE, 2020, pp. 1667–
1673.

[7] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[8] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in 2011 IEEE international conference on
robotics and automation. IEEE, 2011, pp. 723–730.

[9] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “Pampc: Perception-
aware model predictive control for quadrotors,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 1–8.

[10] V. Murali, I. Spasojevic, W. Guerra, and S. Karaman, “Perception-
aware trajectory generation for aggressive quadrotor flight using
differential flatness,” in 2019 American Control Conference (ACC).
IEEE, 2019, pp. 3936–3943.

[11] L. Bartolomei, L. Pinto Teixeira, and M. Chli, “Perception-aware
path planning for uavs using semantic segmentation,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2020)(virtual), 2020.

[12] Z. Zhang and D. Scaramuzza, “Perception-aware receding horizon
navigation for mavs,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 2534–2541.

[13] Y. Jang, Y. Lee, and H. J. Kim, “Navigation-assistant path planning
within a mav team,” 2020.

[14] M. Collins and N. Michael, “Efficient planning for high-speed mav
flight in unknown environments using online sparse topological
graphs,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 11 450–11 456.
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